103 research outputs found

    The restricted two-body problem in constant curvature spaces

    Full text link
    We perform the bifurcation analysis of the Kepler problem on S3S^3 and L3L^3. An analogue of the Delaunay variables is introduced. We investigate the motion of a point mass in the field of the Newtonian center moving along a geodesic on S2S^2 and L2L^2 (the restricted two-body problem). When the curvature is small, the pericenter shift is computed using the perturbation theory. We also present the results of the numerical analysis based on the analogy with the motion of rigid body.Comment: 29 pages, 7 figure

    Non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary

    Full text link
    We have discussed non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary. By photogravitational we mean that both primaries are radiating. We normalised the Hamiltonian using Lie transform as in Coppola and Rand (1989). We transformed the system into Birkhoff's normal form. Lie transforms reduce the system to an equivalent simpler system which is immediately solvable. Applying Arnold's theorem, we have found non-linear stability criteria. We conclude that L6L_6 is stable. We plotted graphs for (ω1,D2).(\omega_1, D_2). They are rectangular hyperbola.Comment: Accepted for publication in Astrophysics & Space Scienc

    Chaplygin ball over a fixed sphere: explicit integration

    Full text link
    We consider a nonholonomic system describing a rolling of a dynamically non-symmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel--Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconical) coordinates on the Poisson sphere, which can be useful in other integrable problems. Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.Comment: This is an extended version of the paper to be published in Regular and Chaotic Dynamics, Vol. 13 (2008), No. 6. Contains 20 pages and 2 figure
    • …
    corecore